ON THE THEDRY OR DIFPERENTIAL GAMES IN SYSTEMS WITH AFTEREFFECT

PMM Vol. 42 , No.6, 1978 pp. $969-977$
Iu. S. OSIPOV and V. G. PIMENOV
(Sverdlovsk)
(Received January 20, 1978)
An encounter-evasion differential game is studied for control systems with aftereffect $[1-4]$. A feature of the system being analyzed is that it has a timelag effect with respect to the controls which provides the system with important new peculiarities. Using the investigations in [1-4], conditions for the solvability of the problem are indicated and the required control procedures are constructed.

1. The control system

$$
\begin{align*}
& x=f_{1}\left(t, x, u, u^{\tau}\right)+f_{2}(t, x, v) \tag{1,1}\\
& u^{\tau}=u(t-\tau), \quad t \in\left[t_{0}, \vartheta\right], \quad \tau=\text { const }, \quad 0<\tau<\vartheta-t_{0} \\
& \left\|f_{1}\left(t, \quad x, u, \quad u^{\tau}\right)+f_{2}(t, x, \quad v)\right\| \leqslant x(1+\|x\|), \quad x=\text { const }
\end{align*}
$$

is given. Here x is the n-dimensional phase vector; the r_{1}-dimensional vector u and the r_{2}-dimensional vector v are controls subject to the conditions $u \in P$ and $v \in Q$, where P and Q are compacta; the r_{1}-dimensional vector u^{τ} is connected to vector u by the relation shown; the functions $f_{1}\left(t, x, u, u^{\tau}\right)$ and $f_{2}(t, x, v)$ are defined, continuous and continuously differentiable in x on $\left[t_{0}, \theta\right]$ $\times E_{n} \times P \times P$ and $\left[t_{0}, \forall\right] \times E_{n} \times Q\left(E_{n}\right.$ is the n-dimensional Euclidean space), respectively and the condition stated is fulfilled in the domain of definition.

The encounter problem consists in choosing the control u that takes the phase vector of system (1.1) onto a specified set M in specified time, regardless of any admissible realization of control v. The evasion problem consists in choosing the control v guaranteeing that system (1.1) evades contact with set M, regardless of any admissible realization of control u. Let us formulate the problem more precisely. Every triple $p=\{t ; x ; u(s),-\tau \leqslant s<0\}$, where $t \in\left\{t_{0}, \vartheta\right], x \in E_{n}$ and $u(s) \equiv L^{2}[-\tau, 0)$, is called a position. Here $L^{2}[-\tau, 0)$ is the space of functions square summable on interval $[-\tau, 0)$. A rule associating a set $U(p) \subset$ $P(V(p) \subset Q)$ with each game position p is called a strategy $U(V)$. The initial position $p_{0}=\left\{t_{0} ; x_{0} ; u_{0}(s),-\tau \leqslant s<0\right\}$ is assumed given. Let Δ denote some covering of interval $\left[t_{0}, \vartheta\right]$ by the half-open intervals $\tau_{i} \leqslant t<\tau_{i+1}, \tau_{0}=$ $t_{0}, i=0,1, \ldots N(\Delta) ;$ let $\delta=\max _{i}\left(\tau_{i+1}-\tau_{i}\right)$. By $x\left[t, p_{0}, U\right]_{\Delta}$ we denote a function $x[t]_{\Delta}$, absolutely continuous on $\left[t_{0}, \vartheta\right]$, satisfying the intial condition

$$
\begin{equation*}
x\left[t_{0}\right]_{\Delta}=x_{0} \tag{1.2}
\end{equation*}
$$

and for almost all t from the interval $\left[t_{0}, \vartheta\right]$, the equation

$$
\begin{align*}
& x^{-}[t]_{\Delta}=f_{1}\left(t, x[t]_{\Delta}, u[t], u[t-\tau]\right)+f_{2}\left(t, x[t]_{\Delta}, v[t]_{1}\right) \tag{1.3}\\
& u .[t]=u\left[\tau_{i}\right] \in U\left(\tau_{i} ; x\left[\tau_{i}\right]_{\Delta} ; u_{\tau_{i}}[s],-\tau \leqslant s<0\right)
\end{align*}
$$

$$
\begin{aligned}
& t \in\left[\tau_{i}, \tau_{i+1}\right), i=0,1, \ldots, N \\
& u[t-\tau]=u_{0}\left(t-\tau-t_{0}\right), \quad t \in\left[t_{0}, \quad t_{0}+\tau\right) ; \quad u_{t}(s) \equiv u(t+ \\
& \quad s), s \in[-\tau, 0)
\end{aligned}
$$

Here $v[t]$ is some realization of the control, being an integrable time function with values in Q. Every continuous function possessing the following property: a sequence of coverings $\left\{\Delta_{j}\right\}$ with $\delta_{j} \rightarrow 0$ exists such that some sequence of functions $\left\{x\left[t, p_{0}\right.\right.$, $\left.U]_{\Delta_{j}}\right\}$ converges uniformly on $\left[t_{0}, \vartheta\right]$ to $x\left[t, p_{0}, U\right]$, is called a motion $x[t]=$ $x\left[t, p_{0}, U\right]$ from position p_{0}, corresponding to startegy U. A motion $x[t]$ $=x\left[t, p_{0}, V\right]$ of system (1.1) from position p_{0}, corresponding to strategy V, is defined similarly.

Problem1.1 (encounter). System(1.1), the time interval $\left[t_{0}, \mathfrak{\vartheta}\right]$, an initial position p_{0}, a closed bounded set $M \subset E_{n}$ and a number $c \geqslant 0$ are given. Construct the strategy U° guaranteeing the fulfilment of the condition $x[\boldsymbol{\vartheta}]$ $\in M^{c}$ for any motion $x[t]=x\left[t, p_{0}, U^{\circ}\right]$. Here M^{c} is the closed c-neighborhood of set M.

Problem 1. 2 (evasion). System (1.1), the time interval $\left[t_{0}, \vartheta\right]$, an initial position p_{0}, a closed bounded set $M \subset E_{n}$ and a number $c \geqslant 0$ are given. Construct the strategy V° guaranteeing the condition $x[\vartheta] \notin M^{c}$ for any motion $x[t]=x\left[t, p_{0}, V^{\circ}\right]$.

Sufficient solvability conditions for Problems 1.1. and 1.2 and a method for constructing the required control procedures are presented below.
2. Let a functional $\varepsilon(p)=\varepsilon\left(t ; x ; u_{t}(s),-\tau \leqslant s<0\right)$ be specified on the space of positions, satisfying the following conditions:
1°. Functional $\varepsilon(p)$ is continuous under a change of position p, in the following sense: if the sequence of positions $\left\{p_{k}\right\}=\left\{\left\{t_{k} ; x_{k} ; u_{t_{k}}{ }^{(k)}(s),-\tau \leqslant s<0\right\}\right\}$ is such that $t_{k} \rightarrow t_{*}$ and $x_{k} \rightarrow x_{*}$ as $k \rightarrow \infty$ and $u^{(k)}\left(t_{*}+s\right)=u^{*}\left(t_{*}+s\right)$ when $s \in[-\tau, 0) \cap\left[t_{k}-t_{*}-\tau, t_{k}-t_{*}\right)$ for any k, then $\boldsymbol{\varepsilon}\left(p_{k}\right) \rightarrow \boldsymbol{\varepsilon}\left(p_{*}\right)$ $=\varepsilon\left(t_{*} ; x_{*} ; u_{t_{*}}{ }^{*}(s),-\tau \leqslant s<0\right)$ as $k \rightarrow \infty$.
$2^{\circ} \quad \varepsilon\left(t ; x ; u_{t}{ }^{(1)}(s),-\tau \leqslant s<0\right)=\varepsilon\left(t ; x ; u_{t}{ }^{(2)}(s),-\tau \leqslant s<0\right)$ when $t \in[\boldsymbol{\vartheta}-\boldsymbol{\tau}, \boldsymbol{\vartheta}]$ if only $u_{t}{ }^{(1)}(s)=u_{t}{ }^{(2)}(s)$ when $s \in[-\tau, \boldsymbol{\vartheta}-\boldsymbol{\tau}-t)$.
3° A number $c \geqslant 0$ exists such that $\varepsilon\left(\vartheta, x, u_{\vartheta}(s)\right)=\varepsilon(\vartheta, x)>c$ if $x \notin M^{c}$.

In addition, let the following conditions be fulfilled in the region $t<\vartheta$ and $c<\varepsilon(p)<\beta+c$, where $\beta>0$.
4° The function $\varepsilon\left(t, x, u_{t}(s)\right)$ possesses continuous partial derivatives $\partial \varepsilon /$ $\partial x_{i}, i=1, \ldots, n$, for fixed t and $u_{i}(s)$.
5° If function $u(t)$ is right-continuous at points t and $t-\tau$, then the representation

$$
\begin{align*}
& \varepsilon\left(t+\Delta t, x, u_{t+\Delta t}(s)\right)-\varepsilon\left(t, x, u_{t}(s)\right)= \tag{2.1}\\
& \quad D\left(t, x, u_{t}(s), u(t), u(t-\tau)\right) \Delta t+o(\Delta t)
\end{align*}
$$

is possible, where $\Delta t>0$ and $D\left(t, x, u_{t}(s), u(t), u(t-\tau)\right)=D(p$, $u(t), u(t-\tau)) \quad$ is a functional continuous in all arguments, where the continuity
with respect to a change in position p is understood in the sense of condition 1°.
6°. The inequality

$$
\begin{align*}
& \min _{u \in P}\left\{\frac{\partial \varepsilon}{\partial x} f_{1}(t, x, u, u(t-\tau))\right\}+D\left(t, x, u_{t}(s), u(t-\tau)\right)+ \tag{2,2}\\
& \max _{v \in Q}\left\{\frac{\partial \varepsilon}{\partial x} f_{2}(t, x, v)\right\} \leqslant 0
\end{align*}
$$

is valid.
Note 2.1. In accord with condition 2° the functional $D\left(t, x, u_{t}(s), u(t)\right.$, $u(t-\tau)$) in (2.1) depends only on $t, x, u_{t}(s)$ and $u(t-\tau)$ when $t \in[\theta-$ $\tau, \vartheta\}$; therefore, condition 6° takes the form

$$
\begin{align*}
& \min _{u \in P}\left\{\frac{\partial \varepsilon}{\partial x} f_{1}(t, x, u, u(t-\tau))+D\left(t, x, u_{t}(s), u, u(t-\tau)\right)\right\}+ \tag{2.3}\\
& \max _{v \in Q}\left\{\frac{\partial \varepsilon}{\partial x} f_{2}(t, x, v)\right\} \leqslant 0
\end{align*}
$$

Analogously to [2] we introduce the concept of an extremal strategy U°. If $\varepsilon(p) \leqslant c$ or $\varepsilon(p) \geqslant c+\beta$, we assume $U^{\circ}(p)=P$; if $c<\varepsilon(p)<c+\beta$, then $U^{\circ}(p)$ is the set of vectors $u^{\circ} \in P$ satisfying the condition

$$
\begin{aligned}
& \min _{u \in P}\left\{\frac{\partial \varepsilon}{\partial x} f_{\mathrm{I}}(t, x, u, u(t-\tau))+\lambda D\left(t, x, u_{t}(s), u, u(t-\tau)\right)\right\}= \\
& \quad \frac{\partial \varepsilon}{\partial x} f_{1}\left(t, x, u^{\circ}, u(t-\tau)\right)+\lambda D\left(t, x, u_{t}(s), u^{\circ}, u(t-\tau)\right) \\
& \lambda=\left\{\begin{array}{l}
0, t \in[\vartheta-\tau, \vartheta] \\
1, t \in\left[t_{0}, \vartheta-\tau\right)
\end{array}\right.
\end{aligned}
$$

The following theorem is valid.
Theorem 2.1. Let a functional $\varepsilon(p)$ exist satisfying conditions $1^{\circ}-3^{\circ}$ and satisfying conditions $4^{\circ}-6^{\circ}$ in the region $t<\vartheta$ and $c<\varepsilon(p)<c+\beta$, where
$\beta>0$. Then, if $\varepsilon\left(p_{0}\right) \leqslant c$, the extremal startegy U^{\bullet} solves the encounter Problem 1.1.

The evasion problem is solved analogously.
Let a functional $\varepsilon(p)$ be given, satisfying conditions $1^{\circ}, 2^{\circ}$ and the following condition:
$3^{\circ} \mathrm{a}$. A number $c \geqslant 0$ exists such that $\varepsilon\left(\vartheta, x, u_{\vartheta}(s)\right)=\varepsilon(\vartheta, x) \leqslant c \quad$ if $x \in M^{c}$.

In addition, let conditions $4^{\circ}, 5^{\circ}$ and the following condition 6° a be fulfilled in the region $t<\vartheta$ and $c-\gamma<\varepsilon(p) \leqslant c$, where $\gamma>0$:
6° a. The inequality resulting from(2.2) when the sign \leqslant is replaced by the sign \geqslant is valid.

Note2.2. When $t \in[\boldsymbol{\theta}-\boldsymbol{\tau}, \boldsymbol{\vartheta}]$ the last inequality can be represented in form (2.3) with the sign \leqslant replaced by the sign \geqslant.

We define the extremal strategy V° as follows: if $\boldsymbol{e}(p)>c$ or $\varepsilon(p) \leqslant c-\gamma$, then $V^{\circ}(p)=Q$; if $c-\gamma<\varepsilon(p) \leqslant c$, then $V^{\circ}(p)$ is the set of vectors $v^{\circ} \in Q$
satisfying the condition

$$
\max _{v \in Q}\left\{\frac{\partial \varepsilon}{\partial x} f_{2}(t, x, v)\right\}=\frac{\partial \varepsilon}{\partial x} f_{2}\left(t, x, v^{\circ}\right)
$$

The following theorem is valid.
Theorem 2.2. Let a functional $\varepsilon(p)$ exist satisfying conditions $1^{\circ}, 2^{\circ}$ and $3^{\circ} \mathrm{a}$ and satisfying conditions $4^{\circ}, 5^{\circ}$ and 6° a in the region $t<\theta$ and $c-\gamma<$ $\varepsilon(p) \leqslant c$, where $\gamma>0$. Then, if $\varepsilon\left(p_{0}\right)>c$, the extremal strategy V° solves the evasion Problem 1.2.

We obtain the solution of the differential game of encounter-evasion with target set M^{c} at instant ϑ by combining Theorems 2.1 and 2.2 .

Theorem 2.3. Let a functional $\varepsilon(p)$ exist satisfying conditions 1° and 2°, the boundary conditions

$$
\begin{equation*}
\varepsilon(\vartheta, x)=\min _{m \in M^{X}}\{\|x-m\|\} \tag{2.4}
\end{equation*}
$$

and conditions $4^{\circ}-6^{\circ}$ in some region $0 \leqslant \sigma_{0}<\varepsilon(p)<\sigma^{\circ}$ and $t<\vartheta$, where (2.2) in condition 6° is fulfilled with the equality sign. Then for any initial position
p_{0} and for any number c such that $\sigma_{0}<c<\sigma^{\circ}$ either a strategy U° exists such that $x[\vartheta] \in M^{c}$ is fulfilled for any motion $x[t]=x\left[t, p_{0}, U^{\circ}\right]$ or a strategy V^{0} exists such that $x[\theta] \not \equiv M^{c}$ is fulfilled for any motion $x[t]=x[t$, p_{0}, V°;
3. Let us discuss the possibility of constructing a functional ε with the properties required, relying on the results in [2]. We consider probability measures $v_{t}(d v)$ depending on $t \in\left[t_{0}, \boldsymbol{v}\right)$ and defined on set Q, satisfying the condition of weak measurability: the function

$$
\beta(t)=\int_{Q} \alpha(v) v_{t}(d v)
$$

must be Lebesgue-measurable on $\left[t_{0}, \vartheta\right)$ for every continuous function $\alpha(v)$. We consider as well probability measures $\mu_{t}(d u)$ depending on $t \in\left[t_{0}-\tau, \vartheta\right)$ and defined on set P, satisfying an analogous condition of weak measurability. For every probability $\mu_{t}(d u)$, weakly measurable on $\left[t_{0}-\tau, \vartheta\right)$, we can define a measure $\mu_{t, t-\tau}\left(d u, d u^{\tau}\right)=\mu_{t-\tau}\left(d u^{\tau}\right) \mu_{t}(d u)$, weakly measurable on $\left[t_{0}, \theta\right)$, defined on set $P \times P$ for each value of $t \in\left[t_{0}, \boldsymbol{v}\right)$ 。 Having the function $\mu=\mu_{t}$, weakly measurable $\left[t_{0}-\tau, \theta\right)$, and the function $v=\nu_{t}$, weakly measurable on $\left[t_{0}, \vartheta\right]$, we can construct measures on $\left[t_{0}, \theta\right) \times P \times P$ and $\left[t_{0}, \theta\right) \times Q$, respectively: $\mu^{*}\left(d t, \quad d u, \quad d u^{\tau}\right)=\mu_{t-\tau}\left(d u^{\tau}\right) \mu_{t}(d u) d t$ and $v^{*}(d t, d v)=v_{t}(d v) d t$. By the weak convergence of functions $\mu_{t}, t \in\left[t_{0}, \theta\right)$ we mean weak convergence in the space of linear functions

$$
\beta_{\mu} *(\alpha)=\int_{i_{0}}^{0} \int_{P} \int_{P} \alpha\left(t, u, u^{\tau}\right) \mu_{t-\tau}\left(d u^{\tau}\right) \mu_{t}(d u) d t
$$

defined on the space of functions $\alpha\left(t, u, u^{\tau}\right)$ defined and continuous on $\left[t_{0}, \theta\right) \times$ $\boldsymbol{P} \times \boldsymbol{P}$. Correspondingly, the weak convergence of functions $v_{i}, t \in\left[t_{0}, \boldsymbol{\vartheta}\right)$, is weak convergence in the space of linear functionals

$$
\beta_{v} *(\alpha)=\int_{i_{0}}^{\theta} \int_{Q} \alpha(t, v) v_{t}(d v) d t
$$

The sets of measures of form $\mu_{t-\tau}\left(d u^{\tau}\right) \mu_{t}(d u) d t$ and $v_{t}(d v) d t$, constructed above, are sets weakly closed and weakly compact in themselves. The weakly measurable functions $\mu=\mu_{t}\left(v=v_{t}\right), t \in\left[t_{*}, \boldsymbol{\vartheta}\right)$, whose values are the probability measures $\mu_{t}(d u)$ on $P\left(v_{t}(d v)\right.$ on $\left.Q\right)$ are called program controls on the half-open interval $\left[t_{*}, \boldsymbol{\vartheta}\right.$). The weakly measurable functions $\mu \doteq \mu_{t_{*}+3}, s \in$ $[-\tau, 0)$, whose values are the probability measures $\mu_{t_{*}+s}(d u)$ on P are called the prior histories of the program control to the instant t_{*}.

A solution of the differential equation with initial condition

$$
\begin{aligned}
& x^{\cdot}=\int_{P} \int_{P} f_{\mathrm{I}}\left(t, x, u, u^{\tau}\right) \mu_{t-\tau}\left(d u^{\tau}\right) \mu_{t}(d u)+\int_{Q} f_{2}(t, x, v) v_{t}(d v), \\
& x\left(t_{*}\right)=x_{*}
\end{aligned}
$$

is called a program motion $x\left(t, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}, v_{t}\right)$ generated by program controls μ_{t} and ν_{t}, by the prior history $\mu_{t_{*}+s}, s \in[-\tau, 0)$, of the program control to the instant t_{*} and by the initial values t_{*} and x_{*}. We consider two auxiliary problems.

Problem 3.1. Given the triple $\left\{t_{*} ; x_{*} ; \mu_{t_{*}+s},-\tau \leqslant s<0\right\}$, a bounded closed set $M \subset E_{n}$ and a program control $v_{t}, t \in\left[t_{*}, \boldsymbol{\theta}\right)$. Among the program controls μ_{t} find the optimal minimizing control $\mu_{t}{ }^{\circ}, t \in\left[t_{*}, \vartheta\right)$, satisfying the condition

$$
\begin{aligned}
& \rho\left(x\left(\vartheta, t_{*}, x_{*}, \mu_{t_{*+s}}, \mu_{t}{ }^{\circ}, v_{t}\right), M\right)= \\
& \quad \min _{\mu_{t}}\left\{\rho\left(x\left(\vartheta, t_{*}, x_{*}, \mu_{t_{*+s}}, \mu_{t}, v_{t}\right), M\right)\right\} \\
& \rho(x, M)=\min _{m \in M}\{\|x-m\|\}
\end{aligned}
$$

Problem 3.1 has a solution for every $t_{*}, x_{*}, \mu_{t_{*}+s}$ and ν_{t}. Indeed $\rho(x, M)$ depends continuously on x, while in its own turn $x=x\left(\theta, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}, v_{t}\right)$ depends continuously on the program control $\mu_{t}, t \in\left[t_{*}, \boldsymbol{\theta}\right)$, as can be verified [2], if the proximity of the program controls μ_{t} to each other is estimated in the weak topology. Then the functional $\rho\left(x\left(\hat{\vartheta}, t_{*}, x_{*}, \mu_{t * s}, \mu_{t}, v_{t}\right), M\right)$ achieves; on the weakly compact set $\left\{\mu_{t}, t \in\left[t_{*}, \vartheta\right)\right\}$ of its arguments, a minimum on some control $\mu_{t}{ }^{\circ}$. The optimal program control $\mu_{t}{ }^{\circ}$ solving Problem 3.1 satisfies a certain condition that is an analog of Pontriagin's maximum principletransformed for systems with a nontrivial time lag in the control variable (see [6].

Theorem 3.1. Let the inequality

$$
\min _{\mu_{t}}\left\{\rho\left(x\left(\vartheta, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}, v_{t}\right), M\right)\right\}>0
$$

be fulfilled under the hypotheses of Problem 3.1. Then the optimal program control
$\mu_{t}{ }^{\circ}$ and the program motion $x^{\circ}(t)=x\left(t, t_{*}, x_{*}, \mu_{t+s}, \mu_{l}{ }^{\circ}, v_{l}\right)$ generated by it satisfy for almost all t from $\left[t_{*}, \vartheta\right]$ the conditions

$$
\int_{P} \int_{P} s(t) f_{1}\left(t, x^{\circ}(t), u, u^{\tau}\right) \mu_{t-\tau}^{\circ}\left(d u^{\tau}\right) \mu_{t}^{\circ}(d u)+
$$

$$
\begin{aligned}
& \lambda \int_{P} \int_{P} s(t+\tau) f_{\mathbf{r}}\left(t+\tau, x^{o}(t+\tau), u_{\tau}, u\right) \mu_{t}^{\circ}(d u) \mu_{t+\tau}^{\circ}\left(d u_{\tau}\right)= \\
& \int_{P} \min _{u \in P}\left\{s(t) f_{1}\left(t, x^{\circ}(t), u, u^{\tau}\right) \mu_{t-\tau}^{\circ}\left(d u^{\tau}\right)+\right. \\
& \left.\lambda s(t+\tau) f_{\mathbf{1}}\left(t+\tau, x^{\circ}(t+\tau), u_{\tau}, u\right) \mu_{t+\tau}^{\circ}\left(d u_{\tau}\right)\right\} \\
\lambda= & \left\{\begin{array}{l}
1, t \in\left[t_{*}, \vartheta-\tau\right) \\
0, t \in[\vartheta-\tau, \vartheta]
\end{array}\right.
\end{aligned}
$$

Here $u_{\tau}=u(t+\tau)$ and $s(t)$ is a solution of the equation with boundary condition

$$
\begin{align*}
& s^{*}(t)=-L(t) s(t), \quad s(\vartheta)=\frac{x^{\circ}(\vartheta)-m^{\circ}}{\left\|x^{\circ}(\vartheta)-m^{\circ}\right\|} \tag{3.1}\\
& L(t)=\int_{P} \int_{P}\left[\frac{\partial f_{1}}{\partial x}\right]_{x^{\circ}(t)} \mu_{t-\tau}^{\circ}\left(d u^{\tau}\right) \mu_{t}^{\circ}(d u)+\int_{Q}^{\circ}\left[\frac{\partial f_{2}}{\partial x}\right]_{x^{\circ}(t)} v_{t}(d v)
\end{align*}
$$

where m° is the point of M closest to $x^{\circ}(\mathcal{Y})$ (possibly, nonunique).
Problem 3.2. Given the triple $\left\{t_{*}, x_{*} ; \mu_{t_{*}+s},-\tau \leqslant s<0\right\}$, a bounded closed set M and an instant ϑ. Among the program controls μ_{t} and $v_{t}, t \in\left[t_{*}\right.$, $\boldsymbol{\vartheta}$), find the optimal maximizing pair $\left\{\mu_{t}{ }^{\circ}, v_{i}^{\circ}\right\}$ of controls, satisfying the condition

$$
\begin{align*}
& \rho\left(x\left(\boldsymbol{v}, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}^{\circ}, v_{t}^{\circ}\right), M\right)= \tag{3.2}\\
& \quad \min _{\mu_{t}}\left\{\rho\left(x\left(\boldsymbol{\vartheta}, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}, v_{t}^{\circ}\right), M\right\}=\right. \\
& \quad \max _{v_{t}} \min _{\mu_{t}}\left\{\rho\left(x\left(\vartheta, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}, v_{t}\right), M\right)=\varepsilon\left(t_{*}, x_{*}, \mu_{t_{*}+s}\right)\right.
\end{align*}
$$

By reasonings similar to the proof of existence of the solution of Problem 3.1 it can be verified that Problem 3.2 has a solution for every t_{*}, x_{*} and $\mu_{* * 1 s}$.

We say that regularity conditions are fulfilled in region $0 \leqslant \sigma_{0}<\varepsilon<\sigma^{\circ}$ if for every triple $\left\{t_{*} ; x_{*} ; \mu_{t_{n}+s},-\tau \leqslant s<0\right\}$ such that $0 \leqslant \sigma_{0}<\varepsilon\left(t_{*}, x_{*}, \mu_{t_{*}+s}\right)$ $<\sigma^{\circ}$, Problem 3.2 has a unique solution $\left\{\mu_{t}^{\circ}, \nu_{l}{ }^{\circ}\right\}$ (to within coincidence on a set of measure zero) and the value $m^{\circ \circ} \in M$ minimizing $\rho\left(x\left(\boldsymbol{\vartheta}, t_{*}, x_{*}, \mu_{t_{*}+s}\right.\right.$, $\left.\mu_{t}{ }^{\circ}, v_{t}{ }^{\circ}\right), M$) is unique as well.

Theorem 3.2. Let the regularity conditions be fulfilled in region $0 \leqslant \sigma_{0}$ $<\varepsilon<\sigma^{\circ}$. Then if $\sigma_{0}<\varepsilon\left(t_{*}, x_{*}, \mu_{t_{*}+s}\right\rangle<\sigma^{\circ}$, the optimal maximizing control $\nu_{t}{ }^{\circ}$ of Problem 3.2 satisfies the following condition:

$$
\int_{Q} s(t) f_{2}\left(t, x^{\infty}(\stackrel{t}{t}), v\right) v_{t}^{\circ}(d v)=\max _{v \in Q}\left\{s(t) f_{2}\left(t, x^{\infty}(t), v\right)\right\}
$$

for almost all $t \in\left[t_{*}, \vartheta\right]$. The conclusion of Theorem 3.1, wherein $x^{\circ}(t)$ should be replaced by $x^{\circ \circ}(t)=x\left(t, t_{*}, x\left(t, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}^{\circ}, v_{t}{ }^{\circ}\right) \quad\right.$ is fulfilled for the optimal minimizing control $\mu_{t}{ }^{\circ}$ of Problem 3.2. The value $s(t)$ is determined from (3.1) where m° should be replaced by $m^{\circ \circ}$, and $x^{\circ}(t)$ by $x^{\circ \circ}(t)$, and v_{t} by $v_{t}{ }^{\circ}$.

Theorem: 3.1 and 3.2 are proved by proof plan for Lemma 36.1 and 37.1 in [2].
The quantity $\varepsilon\left(t_{*}, x_{*}, \mu_{t_{*}+s}\right)$ is determined also when Lebesgue -measurable functions $u_{t_{*}}(s)$ mapping the half-open interval $[-\tau, 0)$ into P are prescribed
instead of the functions $\mu_{t_{*}+8}$ whose values are the probability measures $\mu_{t_{*}+s}\left(d u^{\tau}\right)$. Consequently, the quantity $\varepsilon(p)$ is defined for each position $p=\left\{t ; x ; u_{t}(s)\right.$, $-\tau \leqslant s<0\}$. The sets of all $\left\{x, u_{t}(s)\right\}$ such that $\varepsilon\left(t, x, u_{t}(s)\right) \leqslant c$ are called program absorption sets $W_{t}{ }^{c}$ of target M^{c}. Thus , $\left\{x_{*}, u_{t_{*}}(s)\right\} \in W_{t *}{ }^{c}$ if and only if for every choice of programicontrol $v_{t}\left(t \in\left[t_{*}, \vartheta\right)\right.$), among the program controls $\mu_{t}\left(t \in\left[t_{*}, \vartheta\right)\right)$ we can find at least one such that the inclusion $\quad x(\hat{\vartheta}) \in M^{c}$ is -fulfilled for the program motion $x(t)=x\left(t, t_{*}, x_{*}, u_{t_{*}}(s), \mu_{i}, v_{i}\right)$.

Theorem 3.3. The functional $\varepsilon\left(p_{*}\right)=\varepsilon\left(t_{*}, x_{*}, u_{t_{*}}(s)\right)$ defined by (3.2) satisfies conditions 1° and 2° and the boundary condition (2.4). If the regularity conditions are fulfilled in the region $0 \leqslant \sigma_{0}<\varepsilon<\sigma^{\circ}$, then conditions $4^{\circ}-6^{\circ}$ are fulfilled in this region, and

$$
\begin{align*}
& {\left[\frac{\partial \varepsilon}{\partial x}\right]_{\left.t_{*}, x_{*}, u_{t_{*}}(s)\right\}}=s\left(t_{*}\right) } \tag{3.3}\\
& D\left(t_{*}, x_{*}, u_{t_{*}}(s), u\left(t_{*}\right), u\left(t_{*}-\tau\right)\right)- \tag{3.4}\\
& \lambda \int_{P} s\left(t_{*}+\tau\right) f_{\mathrm{r}}\left(t_{*}+\tau, x^{\infty}\left(t_{*}+\tau\right), u_{\tau}, u\left(t_{*}\right)\right) \mu_{t_{*}+\tau}^{\circ}\left(d u_{\tau}\right)- \\
& \min _{u \in P}\left\{s\left(t_{*}\right) f_{\mathrm{r}}\left(t_{*}, x_{*}, u, u\left(t_{*}-\tau\right)\right)+\right. \\
&\left.\lambda \int_{P} s\left(t_{*}+\tau\right) f_{\Upsilon}\left(t_{*}+\tau, x^{\infty}\left(t_{*}+\tau\right), u_{\tau}, u\right) \mu_{t_{*}+\tau}^{\circ}\left(d u_{\tau}\right)\right\}- \\
& \max _{v \in Q}\left\{s\left(t_{*}\right) f_{2}\left(t_{*}, x_{*}, v\right)\right\} \\
& \lambda= \begin{cases}1, & t_{*} \in\left[t_{0}, \vartheta-\tau\right) \\
0, & t_{*} \in[\vartheta-\tau, \vartheta]\end{cases}
\end{align*}
$$

and in condition 6° the bounds (2.2) and (2.3) are fulfilled with the equality sign. The quantities $\mu_{t}{ }^{\circ}, v_{t}{ }^{\circ}, x^{\circ 0}(t)$ and $s(t)$ here are the same as in Theorem 3.2.

To prove Theorem 3.3 we can use the reasonings in the proofs of the analogous statements in [2].
4. As an example we consider the linear time-lag control system

$$
\begin{equation*}
x^{\cdot}(t)=A(t) x(t)+B_{1}(t) u(t)+B_{2}(t) u(t-\tau)-C(t) v(t)+w(t) \tag{4.1}
\end{equation*}
$$

The matrices $A(t), B_{1}(t), B_{2}(t), C^{\prime}(t)$ and $w(t)$ are continuous functions on $\left[t_{0}, \vartheta\right]$. We assume that sets P, Q and M are convex. To be specific we consider the Problem 1.1. of encounter with set M. The program controls here are any functions $u(t)(v(t))$ Lebesgue -integrable on interval $\left[t_{0}, \vartheta\right]$, with values in $\quad P(Q)$. Using the Cauchy formula and the separability condition for target set M and the attainability set, we can establish the form of the program absorption set W_{t}.

Theorem 4. 1. $\left\{x ; u_{t}(s),-\tau \leqslant s<0\right\} \in W_{t}$ if and only if $\gamma\left(t, x, u_{t}(s)\right)$ $\leqslant 0$, where

$$
\begin{align*}
& \gamma\left(t, x, u_{t}(s)\right)=\max _{\| \| \|=1}\left\{\int_{t}^{\theta} \max _{v \in Q}\{l F(\theta, \xi) C(\xi) v(\xi)\} d \xi-\lambda I-\right. \tag{4.2}\\
& \int_{\eta_{i}(\lambda)}^{\theta} \max _{u \in P}^{\left.\theta \in L F(\vartheta, \xi) B_{1}(\xi) u(\xi)\right\} d \xi-\int_{t}^{\theta} l F(\vartheta, \xi) w(\xi) d \xi-}
\end{align*}
$$

$$
\left.\begin{array}{l}
\left.\int_{-\tau}^{\eta_{2}(\lambda)} l F(\theta, t+\tau+s) B_{2}(t+\tau+s) u_{t}(s) d s-l F(\theta, t) x+\min _{q \in M} l q\right\}, \\
l \in E_{n}, \quad \lambda=\left\{\begin{array}{l}
1, t \in\left[t_{0}, \theta-\tau\right) \\
0, t \in[\theta-\tau, \theta]
\end{array}\right. \\
\left.I=\int_{t}^{\theta-\tau} \max _{u \in P} l l\left[F(\vartheta, \xi) B_{1}(\xi)+F(\theta, \xi+\tau) B_{2}(\xi+\tau)\right] u(\xi)\right\} d \xi
\end{array}\right\} \begin{aligned}
& \eta_{1}(\lambda)=\left\{\begin{array}{rl}
\theta-\tau, & \lambda=1 \\
t, & \lambda=0,
\end{array} \quad \eta_{2}(\lambda)=\left\{\begin{array}{cc}
0, & \lambda=1 \\
\theta-\tau-t, & \lambda=0
\end{array}\right.\right.
\end{aligned}
$$

Here $F(\theta, \xi)$ is the fundamental matric for Eq. (4.1), i. e., an $n \times n$-matrix with the properties $F(t, t)=E$ and $\partial F(t, \xi) / \partial t=A(t) F(t, \xi) ; E$ is the unit matrix.

We assume that the regularity conditions are fulfilled in region $0<\varepsilon<\infty$. Using the results in Paragraphs 2 and 3 we construct the extremal strategy U°. The equation and the boundary condition for the quantity $s(t)$ in the linear case take the form

$$
s^{\cdot}(t)=-A(t) s(t), s(\theta)=-l
$$

Then

$$
\begin{equation*}
s(t)=-F(\vartheta, t) l \tag{4.3}
\end{equation*}
$$

where l° is the vector supplying the maximum in the expression for $\gamma\left(t, x, u_{t}(s)\right)$ in (4.2). From (3.4), making appropriate changes, we obtain

$$
\begin{align*}
& D\left(t, x, u_{t}(s), u(t), u(t-\tau)\right)=\lambda s(t+\tau) B_{2}(t+\tau) u(t)-\min _{u \in P}\left\{s(t) B_{1}(t)+\right. \tag{4.4}\\
& \\
& \left.\lambda s(t+\tau) B_{3}(t+\tau) u\right\}+\max _{v \in Q}\{s(t) C(t) v\}-s(t)\left\{A(t) x+B_{2}(t) u(t-\tau)+w(t)\right\} \\
& \lambda=
\end{align*}
$$

Using (4.3) and (4.4), we obtain by Theorems 3.3. and 2.1 that the extremal strategy U° solving in the regular case the problem of encounter with set M (if the initial position p_{0} is such that $\left.\gamma\left(p_{0}\right) \leqslant 0\right)$ is specified as follows. If $\gamma(p) \leqslant 0$, then U° $(p)=P$. If $\gamma(p)>0$, then

$$
\begin{align*}
& l^{\circ}\left[F(\vartheta, t) B_{1}(t)+\lambda F(\vartheta, t+\tau) B_{2}(t+\tau)\right] u^{\circ}= \tag{4.5}\\
& \quad \max _{u \in P}\left\{l^{\circ}\left[F(\vartheta, t) B_{1}(t)+\lambda F(\vartheta, t+\tau) B_{2}(t+\tau)\right] u\right\} \\
& \lambda= \begin{cases}1, & t \in\left[t_{0}, \vartheta-\tau\right) \\
0, & t \in[\vartheta-\tau, \vartheta]\end{cases}
\end{align*}
$$

In the case given the regularity conditions signify, according to the definition in Paragraph 3 and to Theorems 3.1 and 3.2 , that when $\gamma(p)>0$, first, the vector l° supplying the maximum in the expression for $\gamma(p)$ is unique and, second, a unique (to within coincidence on a set of measure zero) control pair $\left\{u^{\circ}(t), v^{\circ}(t)\right\}$ exists, specified by conditions (4.5) and the condition

$$
\begin{equation*}
l^{\circ} F(\vartheta, t) C(t) c^{\circ}=\max _{v \in Q}\left\{l^{\circ} F(\vartheta, t) C(t) v\right\} \tag{4.6}
\end{equation*}
$$

Note 4.1. In the example being analyzed we can weaken the regularity condition, requiring only the uniqueness of the vector l° supplying the maximum in the expression for $\gamma(p)>0$ (see $[1,2]$). This requirement reduces to the requirement that function $\chi_{t}(l)$ be concave in l, specified by the condition

$$
\begin{aligned}
& \chi_{t}(l)=\int_{i}^{\vartheta} \max _{v \in Q}\{l F(\vartheta, \xi) C(\xi) v(\xi)] d \xi-\lambda \int_{t}^{\theta-\tau} \max _{u \in P}\left\{l \left[F(\vartheta, \xi) B_{1}(\xi)+\right.\right. \\
& \left.\left.F(\vartheta, \xi+\tau) B_{2}(\xi+\tau)\right] u(\xi)\right\} d \xi-\int_{\eta_{1}}^{\theta} \max _{u \in P}\left\{l F(\vartheta, \xi) B_{1}(\xi) u(\xi)\right\} d \xi+\min _{q \in M} l q \\
& \lambda=1, \quad \eta_{1}=\theta-\tau, \quad t \in\left[t_{0}, \theta-\tau\right) \\
& \lambda=0, \quad \eta_{1}=t, \quad t \in[\theta-\tau, \vartheta]
\end{aligned}
$$

Note 4. 2. The function $X_{l}(l)$ is certainly concave in l for any $t \in\left[t_{0}, \forall\right]$ if a convex set $R(t)$ exists such that

$$
\begin{aligned}
& {\left[F(\vartheta, t) B_{1}(t)+\lambda F(\theta, t+\tau) B_{2}(t+\tau)\right] P-F(\leftrightarrow, t) C(t) Q+R(t)} \\
& \lambda= \begin{cases}1, & t \in\left[t_{0}, \hat{\theta}-\tau\right) \\
0, & t \in[\theta-\tau, \vartheta]\end{cases}
\end{aligned}
$$

REFERENCES

1.Krasovskii, N. N. and Osipov, lu. S., Linear differential-difference games. Dokl. Akad. Nauk SSSR, Vol. 197, No. 4, 1971.
2. Krasovskii, N. N. and Subbotin, A. I., Position Differential Games. Moscow, "Nauka", 1974.
3. Osipov, Iu, S., Differential games for systems with aftereffect. Dokl. Akad. Nauk SSSR, Vol. 196, No. 4, 1971.
4. O sip ov, Iu. S., A differential guidance game for systems with aftereffect. PMM Vol. 35, No. 1, 1971.
5. Banks, H. T., Jacobs, M. Q., and Latina, M. R. The synthesis of optimal controls for linear problems with retarded controls. J. Optimizat. Theory and Appl. Vol. 8, No. 5, 1971.
6. Vezhbitskii, A., The maximum principle for processes with nontrivial time lag in the control. Avtomat. Telemekh., No. 10, 1970.

Translated by N.H.C.

