
UDC 62-50 

ON THE THPDRY OF DIFFERBITIAL GAMES IN SYSTEMS WITH AFTIEREFPECT 

PMM Vol. 42, No. 6, 1978 pp. 969-977 

Iu. S. OSIFW? and V. G. PIMJZNOV 

(SverdlovskI 
(Received January 20, 1978) 

An encounter-evasion differential game is studied for control systems with after- 
effect [l-4]. A feature of the system being analyzed is that it has a time- 
lag effect with respect to the controls which provides the system with import- 
ant new peculiarities. Using the investigations in [l-4], conditions for the 
solvability of the problem are indicated and the required control procedures 

are constructed, 

1, The control system 

3. = fi (t, 2, u, uZ) + fi @, 5, u) (1.1) 

US = u (t - z), t E [to, ftl, z = const, 0 < z < 6 - to 

II fl (4 39 u, UT) + f* (t, 2, v) I] < x (1 + II 5 II), x = coma 

is given. Here z is the n -dimensional phase vector; the rl -dimensional vector 
u and the r, -dimensional vector u are controls subject to the conditions U E p 

and v E Q, where P and Q are compacta; the r1 -dimensional vector U* is 
connected to vector u by the relation shown; the functions fl (t, 5, U, U’) and 
fs (t, 5, v) are defined, continuous and continuously differentiable in x onit,,, @I 
x & x p x p and [to, 61 X E, X Q (E, is the n - dimensional Euclidean 

space), respectively and the condition stated is fulfilled in the domain of def~iti~. 
The encounter problem consists in choosing the control U that takes the phase 

vector of system (1.1) onto a specified set M in specified time, regardless of any 
admissible realization of control V . The evasion problem consists in choosing the 
control v guaranteeing that system (1.1) evades contact with set M , regardless of 

any admissible realization of control u . Let us formulate the problem more precis- 

ely. Every triple p = (t; r; u (s), -a <s < 0), where t E be, @I, x E E, 
and u (s) s &2 [ - z, O), is called a position. Here La f - z, 0) is the space of 
functions square summable on interval [-- z, 0) . A rule associating a set u @) C 

P (V @) c Q) with each game position p is called a strategy U (V) . The initial 

position p. = {to; zo; u. (s), - z ;\< s ( 0) is assumed given. Let A denote 
some covering of interval [to, 61 by the half-open intervals zi Q t < I&, x0 = 

to,i = 0, 1, * . . . N (A);let 6 = maxi (%+I - Z.3). By z it, ~0, Ula we 
denote a function x [tjh, absolutely continuous on ito, @I, satisfying the intial con- 

dition 
x [toI* = 50 (1.2) 

and for almost all t from the interval[to, 61, the MlUatiOn 

X0 @IA = fi (t, x id,, u it], l.6 [t - %I) + fi (t, z?Z [tl& v it;) (1.3) 

u.[tI = U [x,1 CFZ U (Zi; 5 [T*lA; Uzi tS1, - Z \< S < 0) 
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i! E [z,, Ti+1), i = 0, 1, . . .) N 

u [t - ZJ = 240 (t - z - to), t E [to, to + z); Ut (s) = u (t + 

s), SE[--z, 0) 

Here V itI is some realization of the control, being an integrable time function with 
values in Q . Every continuous function possessing the following property: a sequence 
of coverings {Aj} with 6j + 0 exists such that some sequence of functions {X [tt po, 
U]A~} converges uniformly on [to, 61 to 5 [t, ~0, U],is called a motion 2 [t] = 
2 [t, PO, U from position po, corresponding to startegy U . A motion it: [t] 
= z [t, PO, VI of system (1.1) from position po, corresponding to strategy v, 
is defined similarly. 

Problem 1.1 (encounter). System (1. 1). the time interval [to, S] , 
an initial position po, a closed bounded set M C E, and a number c > 0 are 
given. Construct the strategy U” guaranteeing the fulfilment of the condition 5 [fi] 
E MC for any motion z ]tl = z It, p0, u’]. Here MC is the closed c -neighbor- 

hood of set M. 
Problem 1. 2 (evasion). System (I. 1). the time interval [to, S], an 

initial position PO, a closed bounded set M C En and a number c>o are 
given. Construct the strategy V” guaranteeing the condition x [61 t$$ MC for any 

motion x ItI = x It, PO, VI. 
Sufficient solvability conditions for Problems 1.1. and 1.2 and a method for const- 

ructing the required control procedures are presented below. 

2. bet a functional E (p) = e (t; S; Ut (S), - r < S < 0) be specified on the 
space of positions, satisfying the following conditions: 

1”. Functional e (p) is continuous under a change of position p, in the follow- 
ing sense: if the sequence of positions {pk} = {{tk; xk; Wk(k) (s) 7 - Z < S < 0)) 
is such that tl, -+ t, and xl, -+ X* as k + 00 and U(‘) (I, + S) = u* (t* + s) 

when SE I-- t, 0) n [tk - t, - z, tl, - t*) for any k , then e (Pk) * e (P*) 

= & (t,; xc*; ut,* (s), -z<s<O) as k-too. 
2” & (t; s; ~~(1) (s), --z < s ( 0) -= E (t; Z; up) (s), -z \r s < O)when 

t E [6 - T, fj] if only’ ut(l) (s) = z+(s) (a) when s e l--r, 6 - r - t). 

3” A number c > 0 exists such that E (6, X, ug (s)) = E (e, X) > c if 
x @ M”. 

In addition, let the following conditions be fulfilled in the region t < 6 and 
c<&(p)<@+C, where B>O. 

4* The function E (t, 5, ut (s)) possesses continuous partial derivatives a& / 

&zi, i = 1, . . ., TZ, for fixed t and ut (s) . 
5” If function u (t) is right-continuous at points t and t - Z, then the repres- 

entation 
e (r i- At, 5, Uttht (a)) - e (6 2, ut (s)) = (2.1) 

D (6 2, r+ (a), u (r), u (t - t)) At + o (At) 

is possible, where At > 0 and D (t, z, ut (s), u (t), u (t - t)) = D (P, 

u (0, u (t - T)) is a functional continuous in all arguments, where the continuity 
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with respect to a change in position p is understood in the sense of condition 1”. 

6”. The inequality 

min{$-fl(t,.r,U,U(t } - z)) + D (t, x7 Ut @>I u (t - r)) + (2.2) 
UEP 

is valid. 
N o t e 2.1. In accord with condition 2’ the functional D (t, 2, U[ (s), u (t), 

U. (t - Z)) in (2.1) depends only on t, x, ut (s) and u (t - z)when t E 10 - 
Z, 81; therefore, condition 6” takes the form 

min -$ fl: (C II^, u, ZJ (t - z>) + D (t, x, Lbt (s), u,, u (t - z)) + (2.3) 
UEP 

Analogously to [2] we introduce the concept of an extremal strategy U” . If 

E (P) < c or & (P) > c f B, weassume U’(p) =P; ifc<e(p)(c+ p, 
then U” (p) is the set of vectors U” CE I’ satisfying the condition 

min 
I 
$f (t 1 ,z,u, n(t -z)) + hqt,G u&)3 u, u(t 

UEP 
-a} = 

The following theorem is valid. 

T h e o I e m 2.1. Let a functional E (p) exist satisfying conditions 1’ -3” and 
satisfying conditions 4” -6” in the region t < 6 and c < E @) < c f fi, where 

s>o. Then, if E (pO) < c , the extremal startegy LJ” solves the encounter 

Problem 1.1. 

The evasion problem is solved analogously. 
Let a functional E (p) be given, satisfying conditions l’, 2’ and the following 

condition: 

3’a. A number c > 0 exists such that E (6, LC, U+ (s)) = E (6, cc) < c if 
x E MC. 

In addition, let conditions 4”, 5” and the following condition 6”a be fulfilled in 

the region t < 6 and c - y < E (p) < C, where y > 0 : 
6’a. The inequality resulting from(2.2) when the sign < is replaced by the sign 

> is valid. 
Note2.2. When i!E[e- Z, Sl the last inequality can be represented in 

form (2.3) with the sign < replaced by the sign >. 
We define the extremal strategy ‘v” as follows: if 8 (p) > C or & (p) < C - y, 

then v” (p) = Q; if c - y < e (p) < c, then v” (p) is the set of vectors v” E Q 
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satisfying the condition 

The following theorem is valid. 
T h e o r e m 2.2. Let a functional E (p) exist satisfying conditions l”, 2”and 

3”a and satisfying conditions 4”, 5*and6’ainthere~on t<@ and c--y< 
a (p) < c, where Y > 0 . Then, if E @a) > c, the extremal strategy v” 

solves the evasion Problem 1.2. 
We obtain the solution of the differential game of encounter-evasion with target 

set MC at instant 6 by combining Theorems 2.1 and 2.2. 
T h e o r e m 2.3. Let a functional 8 @) exist satisfying conditions I” and 2”, 

the boundary conditions 

a (6, x> = m&(115 - m II) (2.4) 

and conditions 4” -6” in some region 0 < oo < e (P) < o” and t < 6 , where 
(2.2) in condition 6” is fulfilled with the equality sign. Then for any initial position 

p. and for any number c such that a, < c < & either a strategy U” exists 

such that 5 I@] E MC is fulfilled for any motion 5 It] = 5 [t, $10, u*] or a 
strategy v” exists such that z is] e Me is fulfilled for any motion z it] = z [t, 

PO, mt 

3, Let us discuss the possibility of constructing a functional E with the properties 
required, relying on the results in [Z]. We consider probability measures it (dv) 
depending on t E ito, 6) and defined on set Q , satisfying the condition of weak 
measurability: the function 

B(t) = s a(n) Yt (du) 
Q 

must be Lebesgue-measurable on [to, 29) for every continuous function a (v) . We 
consider as well probabi~~ measures pf flu) depending on t E [to -Z, 6) and 
defined on set P , satisfying an analogous condition of weak measurability. For 
every probability pt (&J) , weakly measurable on [to - Z, 6),we can define a 
measure ~f,~-~ (du, duZ) = pt-2 (dn’) pt (dn), weakly measurable on [to, a) 9 
defined on set P X P for each value of t E [to, 6) P Having the function p =pt , 
weakly measurable [to - z, @), and the function Y = ‘vt, weakly measurable on 
Ito, $$I* we can construct me~ureson [to, 6) X P X P and [to, 6) X Q,respectiv- 

ely:p* (dt, du, du”) = pt-t (du*) ~1 (du) dt and v* (dt, dv) = +vt (du) dt.By 
the weak convergence of functions pf, t E [to,f)) we mean weak convergence in 
the space of linear functions 

pp* (a) = i 5 j a (t, U, u”) pf-r (dnf) pf (da) dr 
tc p 

defined on the space of functions tl (t, U, u’) defined and continuous on [to, 6) X 
P X P. Correspondingly, the weak convergence of functions V!, t EE [to, e), is 

weak convergence in the space of linear fI.U'ICtiOnalS 
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The sets of measures of form pf_T (&.C) pf (du) dt and vt (dv) dt, constructed 
above, are sets weakly closed and weakly compact in themselves. The weakly 
measurable functions p = pt (Y = YJ, t E [t*, 6), whose values are the probab- 
ility measures pt (du) on P (vt (dv) on Q) are called program controls on the 
half-open interval [t*, 8) . The weakly measurable functions p = ~t++~, s CE 

I---z, O), whose values are the probability measureS P~++~ (du) on P are called 
the prior histories of the program control to the instant t,. 

A solution of the differential equation with initial condition 

x’ = i i fr (t, ~9 ~7 0 N-T (du3 K &) + 1 fz (t, X, V) vt (dv), 
Q 

2 @*) = z* 

is called a program motion x (t, t,, %., p~+~, IQ, it) generated by program 
controls ,ut and vt, by the prior history P~*+~, s E [-r, 0) , of the program con- 
trol to the instant t, and by the initial values t, and z* . We consider two auxili- 

ary problems. 
P r o b 1 e m 3.1. Given the triple {t,; CZ*; ~t++~, --Z < s < 0}, a bounded 

closed set &? C E, and a program control vt, t E it*, 6). Among the prog- 
ram controls /it find the optimal minimizing control pLto, t E [i&, 6), satisfying 
the condition 

Problem 3.1 has a solution for every t,, z*, pt*+s and Yt . Indeed p (5, M) 
depends continuously on x , while in its own turn x = x (fl, t,, x*, PL~_+~, pt, YJ 
depends continuously on the program control pt, t E [t*, e), as can be verified 
[2], if the proximity of the program controls pt to each other is estimated in the 

weak topology. Then the functional p (x( 6, t*, ST*, pt_+a, pt, vt), M) achieves9 
on the weakly compact set { pt, t E ft.,., 8)) of its arguments, a minimum on some 

control pro . The optimal program control pto solving Problem 3.1 satisfies a 
certain condition that is an analog of Pontriagin’s maximum principle transformed for 

systems with a nontrivial time lag in the control variable (see [SD. 
T h e o r e m 3.1. Let the inequality 

min {p (2 (6, r,, x*, pt*+st pt, Gt WI > 0 
h 

be fulfilled under the hypotheses of Problem 3.1. Then the optimal program control 

IQ0 and the program motion x” (t) = z (t, t,, z.+, F~~+~, pLo, vl) generated by 
it satisfy for almost all t from [t*, SJ the conditions 

ss s (0 fr (t, z?(t), u, u’I) pi-z (dr.4 pt” W + 
PP 
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Here u7 = u (t -j- z) and s (t) is a solution of the equation with boundary con- 
dition 

s’(t) = - L V) s (t), (3.1) 

U) = 1s [S],.,,, 
PP 

where m” is the point of &I closest to X0 (6) (possibly, nonunique). 
P r o b 1 e m 3.2. Given the triple {t*, X,; j.kI+ts, --Z < S < 01, a bounded 

closed set M and an instant 6 . Among the program controls p21 and YL, t E it*, 
6), find the optimal maximizing pair {pto, yto) of controls, satisfying the condition 

P (5 (+4 t*7 X*9 c1 t.ts7 p?, $)Y M) = (3.2) 
min (P (X (& t,, + pf,+s, Ft7 0, M} = 

pt 

max min {p (X (6, t,, X*, Ft ,ts, tLl, v)r w = E (&cl x*7 vt,ts) 
v t @Lt 

By reasonings similar to the proof of existence of the solution of Problem 3.1 it 
can be verified that Problem 3.2 has a solution for every t,, x* and Ck,ts. 

We say that regularity conditions are fulfilled in region 0 < (lo < e < (3' if 
for every triple (t,; X.+.; ptStS, --Z -< s < 0) such that 0 < (30 < r (t*, x*, pf,+d 
< C-P, Problem 3.2 has a unique solution {ptO, Y!“} (to within coincidence on a 

set of measure zero) and the value moo e M minimizing p (X (6, t,, X*, pf,+s, 
pt”, Irt’), M) is unique as well. 

Theorem 3.2. Let the regularity conditions be fulfilled in region 0 < 60 
<E<dO. Then if (lo < e (t*, x1, pt,+$) < Go, the optimal maximizing 

control Yt” of Problem 3.2 satisfies the following condition: 

s 
Q 

s (t) f2 (t, 50° (t), 77) YtO (du) = yzt (s @I f2 tt, zoo WY a 

for almost all t E [t*, Sl. The conclusion of Theorem 3.1, wherein x0 (t) should 

be replaced by 5”’ (t) = x (t, t,, 5 (t, t,, x*, pt,+s, pt”, it”) is fulfilled for the 

optimal minimizing control pto of Problem 3.2. The value S (t) is determined 
from (3.1) where m” should be replaced by moo, and x0 (t) by X”’ (t), and Ztt 
by vt”. 

Theorems 3.1 and 3.2 are proved by proof pian for Lemma 36.1 and 37.1 in [2]. 
The quantity e (t*, X*, k-w) - d t 1s e ermined also when Lebesgue -measurable 

functions ut+ (s) mapping the half-open interval L---Z, 0) into P are prescribed 
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instead of the functions pit,+* whose values are the probability measures p,t,+s (dut) , 
Consequently, the quantity a @) is defined for each position p = {t; Z; U, (s), 
--Z < s < 0). The sets of all (z, ut (~)}such that e (t, 2, z+ (s)) < c are called 
program absorption sets Wtc of target MC. Thus , {cc*, Ut. (S)} E WteC if and only 

if for every choice of programlcontrol vt (t E It*, 6)) ,among the program controls 

I-‘t (8 E It,, 6)) we can find at least one such that the inclusion IZ: (9) E MC is 
#fulfilled for the program motion 5 (t) = II: (t, &, 2*, Ut* (a), Vt, vi) . 

Theorem 3.3. The functional E (p*) = E (th, LC*, z&t* (s)) defined by 
(3.2) satisfies conditions 1” and 2” and the boundary condition (2.4). If the regularity 
conditions are fulfilled in the region 0 < do < E < 8, then conditions 4” - 6” are 
fulfilled in this region, and ae 

[ 1 -z if.9 5,, ut, 0)) = s (t*) 
(3.3) 

D (& xz,z, nt, (a), u (t*), ZJ (t* - ‘1)) = (3.4) 

h 1 a (t* t- r) fr (t* + r, 9” (t* + r), G, u @*)) pY,+z (k) - 

m:n {a (&) fr C&, x*3 u, u (r* - r)) + 
UEP 

A= I 1, t*EIto,+--) 
0, t*E[6---,+1 

and in condition 6” the bounds (2.2) and (2.3) are fulfilled with the equality sign. 
The quantities pfo, vfo, x0” (t) and s (t) here are the same as in Theorem 3.2. 

To prove Theorem 3.3 we can use the reasonings in the proofs of the analogous 
statements in [2]. 

4. As an example we consider the linear time-lag control system 

x’ (t) = A (t) x (1) t B, (I) u (1) + Bz (1) u (I - 7) - c (4 v (4 + w (t) (4.1) 

The matrices A (t), Ill(t), B,(t), C (1) and w (t) are continuous functions on [t,,, 91. 
We assume that sets P, Q and M are convex. To be specific we consider the Problem 

1.1. of encounter with set M . The program controls here are any functions u (t) (0 (0) 

Leb esgue -integrable on interval [to, 61, with values in P (Q). Using the Cauchy 

formula and the separability condition for target set 1)f and the attainability set, we 

can establish the form of the program absorption set Wt. 

The ore m 4. 1. (x; ut (s), - T -< s < 0) E Wt if and only if y (t, CC, ut (s)) 
$ 0, where 

max (II; (8, 4) C(c) u (5)) de - kI - (4. a 
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Here F (6, 8) is the fundamental matric for Eq. (4.1). i.e., an n x n -matrix with 
the properties F (t, t) = E and i?F (t, E) I at = A (t) F (t, E): E is the unit matrix. 

We assume that the regularity conditions are fulfilled in region 0 < a < CO + 
Using the results in Paragraphs 2 and 3 we construct the extremal strategy U” , The 

equation and the boundary condition for the quantity s (t) in the linear case take the 
form 

s’ (t) = -A(t)s(t),s(i+=--P 

Then 
s (f) = - F (6, t) I” (4.3) 

where I” is the vector supplying the maximum in the expression for y (t, X, at (s)) 

in (4.2). From (3.4), making appropriate changes, we obtain 

f> (g, z, ut (s), u @)l u (t - 0 = b @ + z) & (g + <) u @) - ;n; (0 @) Bl@) + (4 4) 

l ~s(t+I)Bg(g+r)u}i-~~~(S(t)C(tf 1 ZJ - s (t)fA(t)z+Bg(t)tc(f--)+w(t)) 

h= 1, tE[h, 6-7) 

* 1 0, fE[6---r, 61 

Using (4.3) and (4.4), we obtain by Theorems 3.3. and 2.1 that the extremat strategy 
U” solving in the regular case the problem of encounter with set M (if the initial 

position PO is such that y (po) < 0) is specified as follows. If y (p) < 0 , then C;” 

(P) = P l If Y @j > 0 , then 

1’ [F (6, t) B1 (1) --i- hF (6, t + T) B, (t + +J] I(’ z 
rz; (E” [F (6, tj BI (t) + hF (a, 1 -t ~1 BZ (t I- rtl~i) 

(4.5) 

h= 1, tE[h, s---z) 

i 0. fE[6--t, 61 

In the case given the regularity conditions signify, according to the definition in Para- 
graph 3 and to Theorems 3.1 and 3.2, that when y (p) > 0 II first, the vector 1’ 
supplying the maximum in the expression for y (1,) is unique and, second, a unique 
(to within coincidence on a set of measure zero ) control pair { ZS“ (t), v” (t)] exists, 
specified by conditions (4.5) and the condition 

1°F (8, 1) c (I) 1.O = 22; (2”P (6, f) c(t) 0) (4.6) 
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N o t e 4 . 1. In the example being analyzed we can weaken the regularity con- 
dition, requiring ohly the uniqueness of the vector P supplying the maximum in the 
expression for y (p) > 0 (see [l, 21). This requirement reduces to the requirement 
that function XI (1) be concave in 1, specified by the condition 

a = 1, q1 = 6 - t, t E [to, e - t) 

a = 0, q1 = t, t E [f+ - T, +I 

N o t e 4. 2. The function ~1 (1) is certainly concave in I for any t E [to, 61 
if a convex set I? (t) exists such that 

IF (6, 1) B, (t) + hF (6, t -t ~c) Bz (t + ~11 P = F (@, t) C (t)Q + R (t) 

1, tE[t,,ft---t) 
0, tE[6--. Sl 

REFERENCES 

1 . K I a s o v s k i i, N. N. and 0 s i p o v, Iu. S. , Linear differential-difference 
games. Dokl. Akad. Nauk SSSR, Vol. 197, No. 4, 1971. 

2, K r a s o v s k i i, N. N, and S u b b o t i n, A. I., Position Differential Games. 

Moscow, “Nauka”, 1974. 

3. 0 s i p 0 v, Iu. S., Differential games for systems with aftereffect. Dokl. Akad. 
Nauk SSSR, Vol. 196, No. 4, 1971. 

4. 0 s i p 0 v. hr. S., A differential guidance game for systems with aftereffect, 

PMM Vol. 35, No. 1, 1971. 

5. Banks, H. T., Jacobs, M. Q., and Latina,M. R Thesynthsis of 
optimal controls for linear problems with retarded controls. J. Optimizat. 
Theory and Appl. Vol. 8, No. 5, 1971. 

6. Vezhbitskii, A., The maximum principle for processes with nontrivial 
time lag in the control. Avtomat. Telemekh., No. 10, 1970. 

Translated by N. H. C. 


