ON THE THEORY OF DIFFERENTIAL GAMES IN SYSTEMS WITH AFTEREFFECT

PMM Vol. 42, No. 6, 1978 pp. 969-977 Iu. S. OSIPOV and V. G. PIMENOV (Sverdlovsk) (Received January 20, 1978)

An encounter-evasion differential game is studied for control systems with aftereffect [1-4]. A feature of the system being analyzed is that it has a timelag effect with respect to the controls which provides the system with important new peculiarities. Using the investigations in [1-4], conditions for the solvability of the problem are indicated and the required control procedures are constructed.

1. The control system

$$\begin{aligned} x^{*} &= f_{1}(t, x, u, u^{\tau}) + f_{2}(t, x, v) \\ u^{\tau} &= u(t - \tau), \quad t \in [t_{0}, \vartheta], \quad \tau = \text{const}, \quad 0 < \tau < \vartheta - t_{0} \\ \| f_{1}(t, x, u, u^{\tau}) + f_{2}(t, x, v) \| \leq \varkappa (1 + \| x \|), \quad \varkappa = \text{const} \end{aligned}$$
(1.1)

is given. Here x is the n -dimensional phase vector; the r_1 -dimensional vector u and the r_2 -dimensional vector v are controls subject to the conditions $u \in P$ and $v \in Q$, where P and Q are compacta; the r_1 -dimensional vector u^{τ} is connected to vector u by the relation shown; the functions $f_1(t, x, u, u^{\tau})$ and $f_2(t, x, v)$ are defined, continuous and continuously differentiable in x on $[t_0, \vartheta] \times E_n \times P \times P$ and $[t_0, \vartheta] \times E_n \times Q$ (E_n is the n-dimensional Euclidean space), respectively and the condition stated is fulfilled in the domain of definition.

The encounter problem consists in choosing the control u that takes the phase vector of system (1.1) onto a specified set M in specified time, regardless of any admissible realization of control v. The evasion problem consists in choosing the control v guaranteeing that system (1.1) evades contact with set M, regardless of any admissible realization of control u. Let us formulate the problem more precisely. Every triple $p = \{t; x; u(s), -\tau \leq s < 0\}$, where $t \in [t_0, \vartheta], x \in E_n$ and $u(s) \equiv L^2 [-\tau, 0)$, is called a position. Here $L^2 [-\tau, 0)$ is the space of functions square summable on interval $[-\tau, 0)$. A rule associating a set $U(p) \subset$ $P(V(p) \subset Q)$ with each game position p is called a strategy U(V). The initial position $p_0 = \{t_0; x_0; u_0(s), -\tau \leq s < 0\}$ is assumed given. Let Δ denote some covering of interval $[t_0, \vartheta]$ by the half-open intervals $\tau_i \leq t < \tau_{i+1}, \tau_0 =$ $t_{0,i} = 0, 1, \ldots, N(\Delta)$; let $\delta = \max_i (\tau_{i+1} - \tau_i)$. By $x[t, p_0, U]_{\Delta}$ we denote a function $x[t]_{\Delta}$, absolutely continuous on $[t_0, \vartheta]$, satisfying the initial condition

$$x [t_0]_{\Delta} = x_0 \tag{1.2}$$

and for almost all t from the interval $[t_0, \vartheta]$, the equation

 $x^{*}[t]_{\Delta} = f_{1}(t, x[t]_{\Delta}, u[t], u[t-\tau]) + f_{2}(t, x[t]_{\Delta}, v[t])$ $u[t] = u[\tau_{i}] \in U(\tau_{i}; x[\tau_{i}]_{\Delta}; u_{\tau_{i}}[s], -\tau \leq s < 0)$ (1.3)

$$t \in [\tau_i, \tau_{i+1}), \ i = 0, \ 1, \ \dots, \ N$$

$$u \ [t - \tau] = u_0 \ (t - \tau - t_0), \ t \in [t_0, \ t_0 + \tau); \ u_t \ (s) \equiv u \ (t + s), \ s \in [-\tau, \ 0)$$

Here v[t] is some realization of the control, being an integrable time function with values in Q. Every continuous function possessing the following property: a sequence of coverings $\{\Delta_j\}$ with $\delta_j \rightarrow 0$ exists such that some sequence of functions $\{x[t, p_0, U]_{\Delta_j}\}$ converges uniformly on $[t_0, \vartheta]$ to $x[t, p_0, U]$, is called a motion $x[t] = x[t, p_0, U]$ from position p_0 , corresponding to startegy U. A motion x[t] is defined similarly.

Problem 1.1 (encounter). System (1.1), the time interval $[t_0, \vartheta]$, an initial position p_0 , a closed bounded set $M \subset E_n$ and a number $c \ge 0$ are given. Construct the strategy U° guaranteeing the fulfilment of the condition $x[\vartheta]$ $\subseteq M^c$ for any motion $x[t] = x[t, p_0, U^\circ]$. Here M^c is the closed *c*-neighborhood of set M.

Problem 1.2 (evasion). System (1.1), the time interval $[t_0, \vartheta]$, an initial position p_0 , a closed bounded set $M \subset E_n$ and a number $c \ge 0$ are given. Construct the strategy V° guaranteeing the condition $x[\vartheta] \notin M^c$ for any motion $x[t] = x[t, p_0, V^\circ]$.

Sufficient solvability conditions for Problems 1.1. and 1.2 and a method for constructing the required control procedures are presented below.

2. Let a functional $\varepsilon(p) = \varepsilon(t; x; u_t(s), -\tau \le s < 0)$ be specified on the space of positions, satisfying the following conditions:

1°. Functional $\varepsilon(p)$ is continuous under a change of position p, in the following sense: if the sequence of positions $\{p_k\} = \{\{t_k; x_k; u_{t_k}^{(k)}(s), -\tau \leqslant s < 0\}\}$ is such that $t_k \rightarrow t_*$ and $x_k \rightarrow x_*$ as $k \rightarrow \infty$ and $u^{(k)}(t_* + s) = u^*(t_* + s)$ when $s \in [-\tau, 0) \cap [t_k - t_* - \tau, t_k - t_*)$ for any k, then $\varepsilon(p_k) \rightarrow \varepsilon(p_*) = \varepsilon(t_*; x_*; u_{t_*}^*(s), -\tau \leqslant s < 0)$ as $k \rightarrow \infty$.

2° ε (t; x; $u_t^{(1)}(s)$, $-\tau \leq s < 0$) = ε (t; x; $u_t^{(2)}(s)$, $-\tau \leq s < 0$) when $t \in [0, -\tau, 0]$ if only $u_t^{(1)}(s) = u_t^{(2)}(s)$ when $s \in [-\tau, 0, -\tau - t)$.

3° A number $c \ge 0$ exists such that $\varepsilon (\vartheta, x, u_{\vartheta}(s)) = \varepsilon (\vartheta, x) > c$ if $x \notin M^c$.

In addition, let the following conditions be fulfilled in the region $t < \vartheta$ and $c < \varepsilon$ $(p) < \beta + c$, where $\beta > 0$.

4° The function ε (t, x, u_t (s)) possesses continuous partial derivatives $\partial \varepsilon / \partial x_i$, $i = 1, \ldots, n$, for fixed t and u_t (s).

5° If function u(t) is right-continuous at points t and $t - \tau$, then the representation

$$\varepsilon (t + \Delta t, x, u_{t+\Delta t} (s)) - \varepsilon (t, x, u_t (s)) =$$

$$D (t, x, u_t (s), u (t), u (t - \tau)) \Delta t + o (\Delta t)$$
(2.1)

is possible, where $\Delta t > 0$ and $D(t, x, u_t(s), u(t), u(t - \tau)) = D(p, u(t), u(t - \tau))$ is a functional continuous in all arguments, where the continuity

with respect to a change in position p is understood in the sense of condition 1°.

6°. The inequality

$$\min_{u \in P} \left\{ \frac{\partial \varepsilon}{\partial x} f_1(t, x, u, u(t \to \tau)) \right\} + D(t, x, u_t(s), u(t \to \tau)) + \qquad (2.2)$$

$$\max_{v \in Q} \left\{ \frac{\partial \varepsilon}{\partial x} f_2(t, x, v) \right\} \leqslant 0$$

is valid.

Note 2.1. In accord with condition 2° the functional $D(t, x, u_t(s), u(t), u(t-\tau))$ in (2.1) depends only on $t, x, u_t(s)$ and $u(t-\tau)$ when $t \in [0, -\tau, 0]$; therefore, condition 6° takes the form

$$\min_{u \in P} \left\{ \frac{\partial \varepsilon}{\partial x} f_1(t, x, u, u(t - \tau)) + D(t, x, u(s), u, u(t - \tau)) \right\} + (2.3)$$

$$\max_{v \in Q} \left\{ \frac{\partial \varepsilon}{\partial x} f_2(t, x, v) \right\} \leqslant 0$$

Analogously to [2] we introduce the concept of an extremal strategy U° . If $\varepsilon(p) \leq c$ or $\varepsilon(p) \geq c + \beta$, we assume $U^{\circ}(p) = P$; if $c < \varepsilon(p) < c + \beta$, then $U^{\circ}(p)$ is the set of vectors $u^{\circ} \in P$ satisfying the condition

$$\begin{split} \min_{\mathbf{u}\in P} \left\{ \frac{\partial \varepsilon}{\partial x} f_{\mathbf{1}}(t, x, u, u(t-\tau)) + \lambda D(t, x, u_{t}(s), u, u(t-\tau)) \right\} &= \\ \frac{\partial \varepsilon}{\partial x} f_{\mathbf{1}}(t, x, u^{\circ}, u(t-\tau)) + \lambda D(t, x, u_{t}(s), u^{\circ}, u(t-\tau)) \\ \lambda &= \begin{cases} 0, \ t \in [\vartheta - \tau, \vartheta] \\ 1, \ t \in [t_{0}, \vartheta - \tau) \end{cases} \end{split}$$

The following theorem is valid.

The orem 2.1. Let a functional $\varepsilon(p)$ exist satisfying conditions $1^{\circ} -3^{\circ}$ and satisfying conditions $4^{\circ} -6^{\circ}$ in the region $t < \vartheta$ and $c < \varepsilon(p) < c + \beta$, where $\beta > 0$. Then, if $\varepsilon(p_0) \leqslant c$, the extremal startegy U° solves the encounter Problem 1.1.

The evasion problem is solved analogously.

Let a functional ε (p) be given, satisfying conditions 1°, 2° and the following condition:

3°a. A number $c \ge 0$ exists such that $\varepsilon (\vartheta, x, u_{\vartheta}(s)) = \varepsilon (\vartheta, x) \le c$ if $x \in M^c$.

In addition, let conditions 4°, 5° and the following condition 6° a be fulfilled in the region $t < \vartheta$ and $c - \gamma < \varepsilon$ $(p) \leq c$, where $\gamma > 0$:

6°a. The inequality resulting from (2.2) when the sign \leq is replaced by the sign \geq is valid.

Note 2.2. When $t \in [\vartheta - \tau, \vartheta]$ the last inequality can be represented in form (2.3) with the sign \leq replaced by the sign \geq .

We define the extremal strategy V° as follows: if e(p) > c or $e(p) \leq c - \gamma$, then $V^{\circ}(p) = Q$; if $c - \gamma < e(p) \leq c$, then $V^{\circ}(p)$ is the set of vectors $v^{\circ} \in Q$ satisfying the condition

$$\max_{\boldsymbol{v} \in \mathcal{Q}} \left\{ \frac{\partial \varepsilon}{\partial x} f_2(t, x, v) \right\} = \frac{\partial \varepsilon}{\partial x} f_2(t, x, v^{\circ})$$

The following theorem is valid.

The orem 2.2. Let a functional $\varepsilon(p)$ exist satisfying conditions 1°, 2° and 3° a and satisfying conditions 4°, 5° and 6° a in the region $t < \vartheta$ and $c - \gamma < \varepsilon(p) \le c$, where $\gamma > 0$. Then, if $\varepsilon(p_0) > c$, the extremal strategy V° solves the evasion Problem 1.2.

We obtain the solution of the differential game of encounter-evasion with target set M^c at instant ϑ by combining Theorems 2.1 and 2.2.

The orem 2.3. Let a functional $\varepsilon(p)$ exist satisfying conditions 1° and 2°, the boundary conditions

$$e(\vartheta, x) = \min_{\boldsymbol{m} \in M} \{ \| x - \boldsymbol{m} \| \}$$
(2.4)

and conditions $4^{\circ} - 6^{\circ}$ in some region $0 \leq \sigma_0 < \varepsilon$ $(p) < \sigma^{\circ}$ and $t < \vartheta$, where (2.2) in condition 6° is fulfilled with the equality sign. Then for any initial position

 p_0 and for any number c such that $\sigma_0 < c < \sigma^\circ$ either a strategy U° exists such that $x [\vartheta] \in M^\circ$ is fulfilled for any motion $x [t] = x [t, p_0, U^\circ]$ or a strategy V° exists such that $x [\vartheta] \notin M^\circ$ is fulfilled for any motion $x [t] = x [t, p_0, V^\circ]_{\bullet}$

3. Let us discuss the possibility of constructing a functional ε with the properties required, relying on the results in [2]. We consider probability measures $v_t(dv)$ depending on $t \in [t_0, \vartheta)$ and defined on set Q, satisfying the condition of weak measurability: the function

$$\beta(t) = \int_{Q} \alpha(v) v_t(dv)$$

must be Lebesgue-measurable on $[t_0, \vartheta)$ for every continuous function $\alpha(v)$. We consider as well probability measures $\mu_t(du)$ depending on $t \in [t_0 - \tau, \vartheta)$ and defined on set P, satisfying an analogous condition of weak measurability. For every probability $\mu_t(du)$, weakly measurable on $[t_0 - \tau, \vartheta)$, we can define a measure $\mu_{t,t-\tau}(du, du^{\tau}) = \mu_{t-\tau}(du^{\tau}) \mu_t(du)$, weakly measurable on $[t_0, \vartheta)$, we can define a measure $\mu_{t,t-\tau}(du, du^{\tau}) = \mu_{t-\tau}(du^{\tau}) \mu_t(du)$, weakly measurable on $[t_0, \vartheta)$, defined on set $P \times P$ for each value of $t \in [t_0, \vartheta)$. Having the function $\mu = \mu_t$, weakly measurable $[t_0 - \tau, \vartheta)$, and the function $v = v_t$, weakly measurable on $[t_0, \vartheta]$, we can construct measures on $[t_0, \vartheta) \times P \times P$ and $[t_0, \vartheta) \times Q$, respectively: $\mu^*(dt, du, du^{\tau}) = \mu_{t-\tau}(du^{\tau}) \mu_t(du) dt$ and $v^*(dt, dv) = v_t(dv) dt$. By the weak convergence of functions μ_t , $t \in [t_0, \vartheta)$ we mean weak convergence in the space of linear functions

$$\beta_{\mu} * (\alpha) = \int_{t_0}^{0} \int_{P} \int_{P} \alpha(t, u, u^{\tau}) \mu_{t-\tau}(du^{\tau}) \mu_t(du) dt$$

defined on the space of functions $\alpha(t, u, u^{\tau})$ defined and continuous on $[t_0, \vartheta) \times P \times P$. Correspondingly, the weak convergence of functions v_i , $t \in [t_0, \vartheta)$, is weak convergence in the space of linear functionals

1064

$$\boldsymbol{\beta_{\mathbf{v}}} \ast (\boldsymbol{\alpha}) = \int_{t_{\bullet}Q}^{\bullet} \int_{Q} \boldsymbol{\alpha} \left(t, v \right) \boldsymbol{\nu}_{t} \left(dv \right) dt$$

The sets of measures of form $\mu_{t-\tau} (du^{\tau}) \mu_t (du) dt$ and $\nu_t (dv) dt$, constructed above, are sets weakly closed and weakly compact in themselves. The weakly measurable functions $\mu = \mu_t (\nu = \nu_t), t \in [t_*, \vartheta)$, whose values are the probability measures $\mu_t (du)$ on $P(\nu_t (dv) \text{ on } Q)$ are called program controls on the half-open interval $[t_*, \vartheta)$. The weakly measurable functions $\mu = \mu_{t_*+s}$, $s \in [-\tau, 0)$, whose values are the probability measures $\mu_{t_*+s} (du)$ on P are called the prior histories of the program control to the instant t_* .

A solution of the differential equation with initial condition

$$\begin{aligned} x^{\star} &= \int_{P} \int_{P} f_{\mathbf{I}}(t, x, u, u^{\tau}) \, \mu_{t-\tau}(du^{\tau}) \, \mu_{t}(du) + \int_{Q} f_{2}(t, x, v) \, \mathbf{v}_{t}(dv), \\ x(t_{\star}) &= x_{\star} \end{aligned}$$

is called a program motion $x(t, t_*, x_*, \mu_{t_*+s}, \mu_t, \nu_t)$ generated by program controls μ_t and ν_t , by the prior history μ_{t_*+s} , $s \in [-\tau, 0)$, of the program control to the instant t_* and by the initial values t_* and x_* . We consider two auxiliary problems.

Problem 3.1. Given the triple $\{t_*; x_*; \mu_{t_*+s}, -\tau \leq s < 0\}$, a bounded closed set $M \subset E_n$ and a program control $v_t, t \in [t_*, \vartheta)$. Among the program controls μ_t find the optimal minimizing control $\mu_t^\circ, t \in [t_*, \vartheta)$, satisfying the condition

$$\rho(x(0, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}^{\circ}, \nu_{t}), M) = \min_{\mu_{t}} \{\rho(x(0, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}, \nu_{t}), M)\}$$

$$\rho(x, M) = \min_{m \in M} \{\|x - m\|\}$$

Problem 3.1 has a solution for every t_* , x_* , μ_{t_*+s} and ν_t . Indeed $\rho(x, M)$ depends continuously on x, while in its own turn x = x (ϑ , t_* , x_* , μ_{t_*+s} , μ_t , ν_t) depends continuously on the program control μ_t , $t \in [t_*, \vartheta)$, as can be verified [2], if the proximity of the program controls μ_t to each other is estimated in the weak topology. Then the functional $\rho(x(\vartheta, t_*, x_*, \mu_{t_*+s}, \mu_t, \nu_t), M)$ achieves, on the weakly compact set $\{\mu_t, t \in [t_*, \vartheta)\}$ of its arguments, a minimum on some control μ_t° . The optimal program control μ_t° solving Problem 3.1 satisfies a certain condition that is an analog of Pontriagin's maximum principle transformed for systems with a nontrivial time lag in the control variable (see [6]).

Theorem 3.1. Let the inequality

$$\min_{\mu_t} \left\{ \rho \left(x \left(\vartheta, t_*, x_*, \mu_{t_{*}+s}, \mu_t, \nu_t \right), M \right) \right\} > 0$$

be fulfilled under the hypotheses of Problem 3.1. Then the optimal program control μ_t° and the program motion $x^{\circ}(t) = x(t, t_*, x_*, \mu_{t_*+s}, \mu_t^{\circ}, v_t)$ generated by it satisfy for almost all t from $[t_*, \mathfrak{d}]$ the conditions

$$\sum_{P} \sum_{P} s(t) f_{\mathbf{I}}(t, x^{\circ}(t), u, u^{\tau}) \mu_{t-\tau}^{\circ}(du^{\tau}) \mu_{t}^{\circ}(du) +$$

$$\lambda \sum_{P} \sum_{P} s(t+\tau) f_{I}(t+\tau, x^{\circ}(t+\tau), u_{\tau}, u) \mu_{l}^{\circ}(du) \mathring{\mu}_{l+\tau}^{\circ}(du_{\tau}) =$$

$$\sum_{P} \min_{u \in P} \{s(t) f_{I}(t, x^{\circ}(t), u, u^{\tau}) \mathring{\mu}_{l-\tau}^{\circ}(du^{\tau}) +$$

$$\lambda s(t+\tau) f_{I}(t+\tau, x^{\circ}(t+\tau), u_{\tau}, u) \mathring{\mu}_{l+\tau}^{\circ}(du_{\tau})\}$$

$$\lambda = \begin{cases} 1, t \in [t_{*}, \vartheta - \tau) \\ 0, t \in [\vartheta - \tau, \vartheta] \end{cases}$$

Here $u_{\tau} = u (t + \tau)$ and s(t) is a solution of the equation with boundary condition

$$s^{\bullet}(t) = -L(t)s(t), \quad s(\vartheta) = \frac{x^{\bullet}(\vartheta) - m^{\circ}}{\|x^{\circ}(\vartheta) - m^{\circ}\|}$$

$$L(t) = \sum_{P} \sum_{P} \left[\frac{\partial f_{1}}{\partial x} \right]_{x^{\circ}(t)} \dot{\mu}_{t-\tau}(du^{\tau}) \mu_{t}^{\circ}(du) + \sum_{Q} \left[\frac{\partial f_{2}}{\partial x} \right]_{x^{\circ}(t)} v_{t}(dv)$$
(3.1)

where m° is the point of M closest to x° (9) (possibly, nonunique).

Problem 3.2. Given the triple $\{t_*, x_*; \mu_{t_*+s}, -\tau \leq s < 0\}$, a bounded closed set M and an instant ϑ . Among the program controls μ_t and ν_t , $t \in [t_*, \vartheta)$, find the optimal maximizing pair $\{\mu_t^{\circ}, \nu_t^{\circ}\}$ of controls, satisfying the condition

$$\rho(x(\theta, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}^{\circ}, \nu_{t}^{\circ}), M) =$$

$$\min_{\mu_{t}} \{\rho(x(\theta, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}, \nu_{t}^{\circ}), M\} =$$

$$\max_{\nu_{t}} \min_{\mu_{t}} \{\rho(x(\theta, t_{*}, x_{*}, \mu_{t_{*}+s}, \mu_{t}, \nu_{t}), M) = \varepsilon(t_{*}, x_{*}, \mu_{t_{*}+s})$$
(3.2)

By reasonings similar to the proof of existence of the solution of Problem 3.1 it can be verified that Problem 3.2 has a solution for every t_* , x_* and μ_{t_*+s} .

We say that regularity conditions are fulfilled in region $0 \leqslant \sigma_0 < \varepsilon < \sigma^\circ$ if for every triple $\{t_*; x_*; \mu_{t_*+s}, -\tau \leqslant s < 0\}$ such that $0 \leqslant \sigma_0 < \varepsilon (t_*, x_*, \mu_{t_*+s}) < \sigma^\circ$, Problem 3.2 has a unique solution $\{\mu_t^\circ, \nu_t^\circ\}$ (to within coincidence on a set of measure zero) and the value $m^{\circ\circ} \Subset M$ minimizing $\rho(x(\vartheta, t_*, x_*, \mu_{t_*+s}, \mu_t^\circ, \nu_t^\circ), M)$ is unique as well.

The orem 3.2. Let the regularity conditions be fulfilled in region $0 \le \sigma_0 < \varepsilon < \sigma^\circ$. Then if $\sigma_0 < \varepsilon (t_*, x_*, \mu_{t_*+s}) < \sigma^\circ$, the optimal maximizing control v_t° of Problem 3.2 satisfies the following condition:

$$\int_{Q} s(t) f_{2}(t, x^{\infty}(t), v) v_{t}^{\circ}(dv) = \max_{v \in Q} \{ s(t) f_{2}(t, x^{\infty}(t), v) \}$$

for almost all $t \in [t_*, \vartheta]$. The conclusion of Theorem 3.1, wherein x° (t) should be replaced by $x^{\circ\circ}(t) = x$ (t, t_* , x (t, t_* , x_* , μ_{t_*+s} , μ_t° , ν_t°) is fulfilled for the optimal minimizing control μ_t° of Problem 3.2. The value s (t) is determined from (3.1) where m° should be replaced by $m^{\circ\circ}$, and x° (t) by $x^{\circ\circ}$ (t), and ν_t by ν_t° .

Theorems 3, 1 and 3, 2 are proved by proof plan for Lemma 36.1 and 37.1 in [2]. The quantity ε (t_*, x_*, μ_{t_*+s}) is determined also when Lebesgue — measurable functions u_{t_*} (s) mapping the half-open interval $[-\tau, 0)$ into P are prescribed instead of the functions μ_{t_*+s} whose values are the probability measures $\mu_{t_*+s} (du^{\tau})$. Consequently, the quantity $\varepsilon(p)$ is defined for each position $p = \{t; x; u_t(s), -\tau \leq s < 0\}$. The sets of all $\{x, u_t(s)\}$ such that $\varepsilon(t, x, u_t(s)) \leq c$ are called program absorption sets W_t^c of target M^c . Thus, $\{x_*, u_{t_*}(s)\} \in W_{t*}^c$ if and only if for every choice of program control v_t ($t \in [t_*, \vartheta)$), among the program controls μ_t ($t \in [t_*, \vartheta)$) we can find at least one such that the inclusion $x(\vartheta) \in M^c$ is sufficient for the program motion $x(t) = x(t, t_*, x_*, u_{t_*}(s), \mu_t, v_t)$.

The orem 3.3. The functional $\varepsilon(p_*) = \varepsilon(t_*, x_*, u_{t_*}(s))$ defined by (3.2) satisfies conditions 1° and 2° and the boundary condition (2.4). If the regularity conditions are fulfilled in the region $0 \le \sigma_0 < \varepsilon < \sigma^\circ$, then conditions 4° -6° are fulfilled in this region, and

$$\left[\frac{\partial e}{\partial x}\right]_{\{t_*, x_*, u_{t_*}(s)\}} = s(t_*)$$
(3.3)

$$D (t_{*}, x_{*}, u_{t_{*}}(s), u(t_{*}), u(t_{*} - \tau)) =$$

$$\lambda \int_{P} s(t_{*} + \tau) f_{I}(t_{*} + \tau, x^{\circ\circ}(t_{*} + \tau), u_{\tau}, u(t_{*})) \mu_{t_{*}+\tau}^{\circ}(du_{\tau}) -$$

$$\min_{u \in P} \{s(t_{*}) f_{I}(t_{*}, x_{*}, u, u(t_{*} - \tau)) +$$

$$\lambda \int_{P} s(t_{*} + \tau) f_{I}(t_{*} + \tau, x^{\circ\circ}(t_{*} + \tau), u_{\tau}, u) \mu_{t_{*}+\tau}^{\circ}(du_{\tau})\} -$$

$$\max_{v \in Q} \{s(t_{*}) f_{2}(t_{*}, x_{*}, v)\}$$

$$\lambda = \begin{cases} 1, & t_{*} \in [t_{0}, \vartheta - \tau) \\ 0, & t_{*} \in [\vartheta - \tau, \vartheta] \end{cases}$$
(3.4)

and in condition 6° the bounds (2.2) and (2.3) are fulfilled with the equality sign. The quantities μ_t° , ν_t° , $x^{\circ\circ}(t)$ and s(t) here are the same as in Theorem 3.2.

To prove Theorem 3.3 we can use the reasonings in the proofs of the analogous statements in [2].

4. As an example we consider the linear time-lag control system

$$x'(t) = A(t) x(t) + B_1(t) u(t) + B_2(t) u(t - \tau) - C(t) v(t) + w(t) (4.1)$$

The matrices A(t), $B_1(t)$, $B_2(t)$, C(t) and w(t) are continuous functions on $[t_0, \vartheta]$. We assume that sets P, Q and M are convex. To be specific we consider the Problem 1.1. of encounter with set M. The program controls here are any functions u(t)(v(t)) Lebesgue —integrable on interval $[t_0, \vartheta]$, with values in P(Q). Using the Cauchy formula and the separability condition for target set M and the attainability set, we can establish the form of the program absorption set W_t .

Theorem 4.1. $\{x; u_t(s), -\tau \leq s < 0\} \in W_t$ if and only if $\gamma(t, x, u_t(s)) \leq 0$, where

$$\gamma(t, x, u_{t}(s)) = \max_{\|l\|=1} \left\{ \int_{t}^{0} \max_{v \in Q} \left\{ lF(\vartheta, \xi) C(\xi) v(\xi) \right\} d\xi - \lambda I - \left(4.2 \right) \right\} \\ \int_{\eta_{1}(\lambda)}^{0} \max_{u \in P} \left\{ lF(\vartheta, \xi) B_{1}(\xi) u(\xi) \right\} d\xi - \int_{t}^{0} lF(\vartheta, \xi) w(\xi) d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d\xi - \frac{1}{2} \right\} d\xi - \left(1- \frac{1}{2} \right) \left\{ lF(\vartheta, \xi) w(\xi) d$$

$$\begin{split} & \inf_{\mathbf{r}\in(\lambda)} \int_{-\tau}^{\eta_{\mathbf{r}}(\lambda)} lF\left(\boldsymbol{\vartheta}, t+\tau+s\right) B_{2}\left(t+\tau+s\right) u_{l}\left(s\right) ds - lF\left(\boldsymbol{\vartheta}, t\right) x + \min_{q\in M} lq \Big\}, \\ & l\in E_{n}, \quad \lambda = \left\{ \begin{array}{l} 1, \ t\in [t_{0}, \ \theta-\tau) \\ 0, \ t\in [\theta-\tau, \ \theta] \end{array} \right. \\ & I = \int_{t}^{\vartheta-\tau} \max_{u\in P} \left\{ l\left[F\left(\boldsymbol{\vartheta}, \ \xi\right) B_{1}\left(\xi\right) + F\left(\boldsymbol{\vartheta}, \ \xi+\tau\right) B_{2}\left(\xi+\tau\right)\right] u\left(\xi\right) \right\} d\xi \\ & \eta_{1}\left(\lambda\right) = \left\{ \begin{array}{l} \boldsymbol{\vartheta-\tau}, \quad \lambda=1 \\ t \quad , \quad \lambda=0, \end{array} \right. \\ & \eta_{2}\left(\lambda\right) = \left\{ \begin{array}{l} 0 & , \quad \lambda=1 \\ \boldsymbol{\vartheta-\tau-t}, \quad \lambda=0 \end{array} \right. \end{split}$$

Here $F(\vartheta, \xi)$ is the fundamental matric for Eq. (4.1), i.e., an $n \times n$ -matrix with the properties F(t, t) = E and $\partial F(t, \xi) / \partial t = A(t) F(t, \xi)$; E is the unit matrix.

We assume that the regularity conditions are fulfilled in region $0 < \varepsilon < \infty$. Using the results in Paragraphs 2 and 3 we construct the extremal strategy U° . The equation and the boundary condition for the quantity s(t) in the linear case take the form

$$s^{*}(t) = -A(t) s(t), s(\mathbf{0}) = -t^{\circ}$$

Then

$$s(t) = -F(\vartheta, t) l^{\circ}$$
(4.3)

where l° is the vector supplying the maximum in the expression for $\gamma(t, x, u_t(s))$ in (4.2). From (3.4), making appropriate changes, we obtain

$$D(t, x, u_t(s), u(t), u(t-\tau)) = \lambda s(t+\tau) B_2(t+\tau) u(t) - \min_{u \in P} \{s(t) B_1(t) + \lambda s(t+\tau) B_2(t+\tau) u\} + \max_{v \in Q} \{s(t) C(t) v\} - s(t) \{A(t)x + B_2(t)u(t-\tau) + w(t)\}$$

$$\lambda = \begin{cases} 1, & t \in [t_0, \vartheta - \tau) \\ 0, & t \in [\vartheta - \tau, \vartheta] \end{cases}$$
(4.4)

Using (4.3) and (4.4), we obtain by Theorems 3.3. and 2.1 that the extremal strategy

 U° solving in the regular case the problem of encounter with set M (if the initial position p_0 is such that $\gamma(p_0) \leq 0$) is specified as follows. If $\gamma(p) \leq 0$, then $U^{\circ}(p) = P$. If $\gamma(p) > 0$, then

$$l^{\circ}[F(\vartheta, t)B_{1}(t) + \lambda F(\vartheta, t+\tau)B_{2}(t+\tau)]u^{\circ} =$$

$$\max_{u \in P} \{l^{\circ}[F(\vartheta, t)B_{1}(t) + \lambda F(\vartheta, t+\tau)B_{2}(t+\tau)]u\}$$

$$\lambda = \begin{cases} 1, t \in [t_{0}, \vartheta - \tau) \\ 0, t \in [\vartheta - \tau, \vartheta] \end{cases}$$
(4.5)

In the case given the regularity conditions signify, according to the definition in Paragraph 3 and to Theorems 3.1 and 3.2, that when $\gamma(p) > 0$, first, the vector l° supplying the maximum in the expression for $\gamma(p)$ is unique and, second, a unique (to within coincidence on a set of measure zero) control pair $\{u^{\circ}(t), v^{\circ}(t)\}$ exists, specified by conditions (4.5) and the condition

$$l^{\circ}F(\vartheta, t) C(t) v^{\circ} = \max_{v \in Q} \{l^{\circ}F(\vartheta, t) C(t) v\}$$
(4.6)

Note 4.1. In the example being analyzed we can weaken the regularity condition, requiring only the uniqueness of the vector l° supplying the maximum in the expression for $\gamma(p) > 0$ (see [1,2]). This requirement reduces to the requirement that function $\chi_l(l)$ be concave in l, specified by the condition

$$\begin{split} \chi_t(l) &= \int_{l}^{\mathfrak{d}} \max_{v \in Q} \left\{ lF\left(\mathfrak{d}, \xi\right) C\left(\xi\right) v\left(\xi\right) \right\} d\xi - \lambda \int_{l}^{\mathfrak{d}-\tau} \max_{u \in P} \left\{ l\left[F\left(\mathfrak{d}, \xi\right) B_1\left(\xi\right) + F\left(\mathfrak{d}, \xi + \tau\right) B_2\left(\xi + \tau\right) \right] u\left(\xi\right) \right\} d\xi - \int_{\eta_1}^{\mathfrak{d}} \max_{u \in P} \left\{ lF\left(\mathfrak{d}, \xi\right) B_1\left(\xi\right) u\left(\xi\right) \right\} d\xi + \min_{q \in M} lq \\ \lambda &= 1, \quad \eta_1 = \mathfrak{d} - \tau, \quad t \in [t_0, \ \mathfrak{d} - \tau) \\ \lambda &= 0, \quad \eta_1 = t, \quad t \in [\mathfrak{d} - \tau, \ \mathfrak{d}] \end{split}$$

Note 4.2. The function χ_l (*l*) is certainly concave in *l* for any $t \in [t_0, \vartheta]$ if a convex set R(t) exists such that

$$\begin{cases} F(\vartheta, t) B_1(t) + \lambda F(\vartheta, t+\tau) B_2(t+\tau) \end{bmatrix} P = F(\vartheta, t) C(t)Q + R(t) \\ \lambda = \begin{cases} 1, & t \in [t_0, \vartheta - \tau) \\ 0, & t \in [\vartheta - \tau, \vartheta] \end{cases}$$

REFERENCES

- 1. Krasovskii, N. N. and Osipov, Iu. S., Linear differential-difference games. Dokl. Akad. Nauk SSSR, Vol. 197, No. 4, 1971.
- Krasovskii, N. N. and Subbotin, A. I., Position Differential Games. Moscow, "Nauka", 1974.
- 3. O s i p o v, Iu. S., Differential games for systems with aftereffect. Dokl. Akad. Nauk SSSR, Vol. 196, No. 4, 1971.
- 4. O s i p o v, Iu. S., A differential guidance game for systems with aftereffect. PMM Vol. 35, No. 1, 1971.
- 5. Banks, H. T., Jacobs, M. Q., and Latina, M. R. The synthesis of optimal controls for linear problems with retarded controls. J. Optimizat. Theory and Appl. Vol. 8, No. 5, 1971.
- 6. Vezhbitskii, A., The maximum principle for processes with nontrivial time lag in the control. Avtomat. Telemekh., No. 10, 1970.

Translated by N.H.C.